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Using Adjoint Solutions to Estimate
Errors in Global Quantities
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Adjoint solutions are widely used in computational electromagnetics to provide sensitivities of global quantities to variation in design
parameters. They can also be used to provide estimates of the discretization error in these quantities. Electrostatic force and capacitance
are considered. Results are obtained for two test problems, using different meshes and different polynomial orders of hierarchal, tetra-
hedral finite elements. The estimates track the true errors well over a wide range. Furthermore, the estimates are good enough that,
when added to the computed quantities, they reduce the error in those quantities, often substantially.

Index Terms—Capacitance, electromagnetic analysis, error analysis, finite-element methods (FEMs), force.

I. INTRODUCTION

COMPUTATIONAL methods are routinely used to find
global quantities for electromagnetic devices. Unfor-

tunately, the values obtained are rarely exact, because of
discretization error. Though it is important for a designer to
have an estimate of this error, there has been relatively little
published on estimators for global quantities. Complementary
variational principles offer one approach, but this is relatively
expensive and seems not to have been explored except for the
case of energy, for which rigorous bounds are available [1].
An earlier estimator for force error [2] was based on a virtual
movement of a ring of nodes surrounding the body concerned.
A more general method for arbitrary global quantities makes
use of adjoint fields [3], but so far its application in electro-
magnetics has been limited to linear functionals in microwave
problems, e.g., [4]. In this paper, the adjoint solution is used
to estimate errors in quasistatic quantities that are nonlinear
functionals of the field, e.g., electrostatic force and capacitance.

II. ESTIMATING THE ERROR IN

Consider a global quantity, , that is a functional of the
field within a device. Let be the exact field and let be
a computational approximation to it, lying in a linear space .
We assume that is the field in satisfying

(1)

where is a symmetric bilinear form and is a linear functional.
Using instead of will give a value of that is in error by

, but if is close to , this can be
approximated by a functional linear in

(2)

where is the first variation of at . If we
have a good enough approximation for (Section III), we can
use this equation to estimate the error in .
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There is another functional that can be used instead. It is
defined by

(3)

where is the adjoint solution, the function in satisfying

(4)

We are justified in using instead of to get our estimate for
because, for the exact field, we have

(5)

When is approximated, it can be shown that , unlike , is
insensitive to the part of the error in the approximation that lies
in . Specifically, for any in

(6)

This makes more accurate than . Of course, it requires the
solution to the adjoint (4). Fortunately, this solution is one that
may already be computed for another purpose: It allows us to
find the sensitivity of to a geometric parameter using the
formula [5]

(7)

III. APPROXIMATING THE EXACT SOLUTION

One way of generating an approximation to would be
to solve the computational problem again with a much larger
number of basis functions. The result, while not exact, would
be considerably more accurate than and could be used to give
a reasonable estimate of the error in , using the theory of
the previous section. However, it is undesirable to solve a much
larger computational problem. Instead, we use an approxima-
tion of the form

(8)
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where is a linear combination of the new basis functions
added. To find , (1) is applied in the larger space, but with
the original degrees of freedom frozen, i.e.

(9)

for all that are linear combinations of the new basis func-
tions. Even (9) is too big, because it is a matrix problem equal
in size to the number of new basis functions, which generally
exceeds the original problem size. An approximate solution to
(9) is found by setting the off-diagonal terms of the matrix to
zero.

The new basis functions could be generated in different ways,
depending on the computational method being used. For the re-
sults in Section IV, they were generated by increasing by one
the polynomial order of each hierarchal finite element.

IV. ALTERNATIVE: NO ADJOINT NEEDED

If error estimates are needed for several global quantities,
based on a single solution , the approach described in Sec-
tion II would require a separate adjoint solution for each. If
these adjoint solutions are not already available because they
are needed to obtain sensitivities, the cost of error estimation
can become high. Fortunately, there is an alternative to the ad-
joint approach, requiring just one additional solution no matter
how many global quantities are involved. Further, the estimates
produced by this approach are identical to the errors produced
by the adjoint approach.

Suppose we have an approximation , e.g., obtained by the
method of the previous section. Then the adjoint theory of Sec-
tion II tells us that a good estimate of the error in is ,
and that this is more accurate than . However, it is
possible to “correct” to obtain a new approximation with
the property

(10)

Once is found, the functional can be used instead of and
no adjoints are needed. The new approximation is

(11)

where is the field in satisfying

(12)

Solving (12) takes as much work as finding one adjoint solution,
but it only needs to be done once, independently of the number
of error estimates needed.

V. EXAMPLES: CAPACITANCE AND FORCE

Consider the problem of finding the static electric field in a
volume of air around a number of conductors at specified
potentials. For this problem, and are

(13)

and the space is a discrete space of fields that are irrotational
and have path integrals of zero between every pair of conduc-
tors, i.e., corresponds to the case of all conductors grounded.
The field is any irrotational field matching the specified po-
tentials applied to the conductors.

Now suppose that there are just two conductors. If the po-
tential difference between them is 1 V, the capacitance between
them is just twice the electric stored energy. To find the capaci-
tance, then, the quantity of interest is the energy

(14)

From this, the functional is given by

(15)

From (1) and (13), it is clear that for in ; so, from
(5), the adjoint solution in this case is zero.

The net electrostatic force on conductor A can be extracted
from the field in a number of ways, but, here, we use

(16)

where is a scalar taking the value 1 on conductor A and 0 on
all other conductors. This is the “ -function” result of [6]; it can
be obtained from the principle of virtual work [2]. Both and

are vectors in this case; is given by

(17)

Note that each component of the force needs its own adjoint
solution, unless the method of Section IV is used.

VI. RESULTS

A. Square Wires

Fig. 1 shows the square cross sections of three identical con-
ducting wires, together with part of the surface of the tetrahe-
dral mesh used to analyze the problem. Conductors A and B
are close, and there is, consequently, a large force developed on
each. Conductor C is further away, with a much smaller force.

The wires are assumed to be infinitely long, so the problem is
really two dimensional (2-D). However, it was solved with tetra-
hedral finite elements, taking a 5-mm section along the axis
as the volume for analysis. In the – plane, virtual boundaries
were placed roughly 200-mm away from the wires, to truncate
the domain. Two meshes were used: a coarse mesh, as shown in
Fig. 1, with 1450 tetrahedra; and a fine mesh, with 2599 tetra-
hedra. Since 2-D analysis is possible in this case, the reference
forces were obtained with a commercial 2-D finite element code,
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Fig. 1. Three square wires with applied potentials.

Fig. 2. Magnitude of the estimated error in the net force on conductor A
(Fig. 1), plotted against the true magnitude of the error.

Fig. 3. Magnitude of the estimated error in the net force on conductor C
(Fig. 1), plotted against the true magnitude of the error.

ElecNet [7], using 2892 triangular elements of order 4 (23 310
degrees of freedom).

An estimate for the force error vector was obtained for
the force on conductor A, using the methods described above.
The true force error vector was also calculated, using the refer-
ence force. Fig. 2 shows the magnitude of the estimated error
plotted against the magnitude of the true error. The four points
for the coarse mesh correspond to four different polynomial or-
ders of the finite elements (1 through 4); similarly for the four
points for the fine mesh. Fig. 3 shows the same quantities for the

Fig. 4. True magnitude of the error in the net force on conductor A, for the
original computed force and for the same force after correcting it by adding the
vector error estimate. Coarse mesh.

Fig. 5. True magnitude of the error in the net force on conductor A, for the
original computed force and for the same force after correcting it by adding the
vector error estimate. Fine mesh.

force on conductor C, which is about 50 times smaller. In both
cases, the estimates tracks the true force error over a wide range.
The estimator is noticeably more accurate on the fine mesh.

The estimate of is not only good in magnitude, but also in
direction. This is best shown by adding the vector estimate to the
computed force to give another, corrected, force. Figs. 4 and 5
show that the corrected force has a smaller true error than the
original computed force for all four polynomial orders on both
the coarse and fine meshes. This would obviously not be the case
if the direction of was very wrong, even if its magnitude was
correct. The error estimate has another use, then: By adding it
to the computed quantity, some reduction in error is possible.

B. Parallel Plates

Consider two flat, square, conducting plates, each 5-mm thick
and 40 mm on a side (Fig. 6). The plates are parallel and 10-mm
apart, with an electrostatic potential difference maintained be-
tween them. The three-dimensional FEM was applied to one
eighth of the geometry (using symmetry) to find the capacitance
between the plates, and the force of attraction between them.
The capacitance and force computed with a very fine mesh at
order 4 were taken as the true values.

Figs. 7 and 8 plot the magnitude of the estimated error in
the force and capacitance, respectively, versus the magnitude of
the true error, for various unstructured meshes (3646 to 23 114
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Fig. 6. Two flat, square, conducting plates with a potential difference of 1 V
applied between them.

Fig. 7. Magnitude of the estimated error in the net force of attraction between
the plates (Fig. 6), plotted against the true magnitude of the error.

Fig. 8. Magnitude of the estimated error in the capacitance between the plates
(Fig. 6), plotted against the true magnitude of the error.

tetrahedra) and polynomial orders. Again, the estimators track
the errors reasonably well over a wide range.

Fig. 9 demonstrates that not just the magnitude, but also the
sign of the estimate in the capacitance error is correct. By adding
the estimate, a considerable reduction in error can be achieved.

Fig. 9. True magnitude of the error in capacitance between the plates (Fig. 6),
for the original computed capacitance and for the same capacitance after
correcting it by adding the error estimate. Four orders on the same mesh.

VII. CONCLUSION

A general method for estimating errors in global quantities
has been presented. If adjoint solutions are already being com-
puted for other purposes (e.g., to find sensitivities), they may
be used to find the estimates; otherwise, a single additional so-
lution of the same size as the original is sufficient to estimate
errors in all global quantities. The results for electrostatic force
and capacitance show that the estimates are reliable. In fact, they
are good enough in both magnitude and direction to provide im-
proved values for the global quantities.
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